
 REPORT
Copyright © 2011 ESA and other members

of the SCIDIP-ES Consortium, www.scidip-es.eu

SCIDIP-ES EC Grant Agreement n°. 283401

1

D21.3 Framework

Installation and Developer Manual

Work package WP21 Services/Toolkits Development and Adaptation

Task

Author (s) Simon Berriman APA

Author (s)

Author (s)

Author (s)

Author (s)

Author (s)

Author (s)

Authorized by

Reviewer Name Surname Company

Doc Id

Dissemination Level PUBLIC

Issue 1.0

Date 06/03/2014

 REPORT
Copyright © 2011 ESA and other members

of the SCIDIP-ES Consortium, www.scidip-es.eu

SCIDIP-ES EC Grant Agreement n°. 283401

2

Abstract:

This document represents the Developers’ Manual for the Framework library developed by the
SCIDIP-ES project. This document contains relevant information on how to install (if applicable),
configure and use the library.

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

4

Document Log

Date Author Changes Version Status

21/09/2013 Simon Berriman Initial version, based
on 0.0.2-SNAPSHOT

M24 Draft –
Based on SVN
ver. 5970

Draft

28/10/2013 Simon Berriman Updated for release
1.1.2

M24 Release –
Based on
SVN ver. 6350

Draft

03/03/2014 Simon Berriman Updated for release
version 2.0.0

M30 Release –
based on SVN
ver. 6787

Draft

06/03/2014 Simon Berriman Input to Section 2 and
updated in response to
editor’s comments

1.0 Released

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

5

TABLE OF CONTENTS

... 1

1 INTRODUCTION ... 7

1.1 PURPOSE AND SCOPE .. 7
1.2 WHO SHOULD READ THIS DOCUMENT.. 7
1.3 SYSTEM CONTEXT ... 7

2 DESIGN OVERVIEW ... 7

3 INSTALLATION GUIDE ... 8

3.1 OVERVIEW ... 8
3.2 PREREQUISITES ... 8
3.2.1 SOFTWARE PREREQUISITES .. 8
3.2.2 HARDWARE PREREQUISITES ... 8
3.3 OSS/COTS INSTALLATION ... 8
3.4 LICENSE INFORMATION AND TERMS OF USE ... 8
3.5 DOWNLOAD INFORMATION ... 8
3.6 INSTALLATION .. 8
3.7 UNINSTALLATION ... 9

4 USING THE SCIDIP-ES FRAMEWORK ... 9

5 REGISTRY AUTHENTICATION AND AUTHORISATION .. 15

6 FUTURE WORK .. 16

7 REFERENCE MANUAL ... 17

7.1 KEYBOARD SHORTCUTS ... 17
7.2 COMMAND-LINE COMMANDS ... 17
7.3 PUBLIC APIS .. 17

8 COMMON PROBLEMS AND THEIR CORRECTION ... 17

ANNEX A. CODE RECIPES ... 18

ANNEX B. PREDEFINED REPINFO CATEGORIES ... 20

ANNEX C. REFERENCES ... 22

ANNEX D. FIGURES AND TABLES ... 22

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

6

D.1. LIST OF FIGURES .. 22
D.2. LIST OF TABLES ... 22

ANNEX E. TERMINOLOGY .. 22

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

7

1 Introduction

1.1 Purpose and Scope

This document provides an overview of the M30 release of the SCIDIP-ES Framework library focusing in
particular to its design, installation and usage.

1.2 Who should read this document

Developers who wish to understand and use the SCIDIP-ES Framework for communicating with SCIDIP-
ES RepInfo Registry Service/s.

1.3 System Context

The SCIDIP-ES Framework is a library of common software designed to be built into other
applications. Its purpose is to abstract interactions with one or more Registries within the SCIDIP-ES e-
infrastructure on behalf of that application. The Framework makes working with Representation
Information Labels (RIL) and Manifests completely agnostic of where they originated and indeed
whether or not the RepInfo Network (RIN) crosses over multiple Registries. Only when storing new or
amended RILs or Manifests is it necessary to specify which of the discovered registries to store it in.

By abstracting the communication between SCIDIP-ES components through the SCIDIP-ES Framework
and basing the messages exchanged on the OAIS1 Information Model, the intention is to build in
resilience against changes in technology which might render the e-infrastructure obsolete over time.
This and the concepts of RepInfo, RepInfo network and label as well as Manifests are described in
Section 3 of the [D21.3] Master document.

2 Design Overview

The SCIDIP-ES Framework is a Maven2 project written in Java. The Maven project is tied into the over-
arching SCIDIP-ES parent module for consistency with other deliverables.

The current Registry implementations expose their content as XML documents which comply to known
schema, and so the Framework’s registry facing side utilises JAXB3 to generate Java objects using the
published schema to represent a registry’s content and also to marshall/unmarshall the documents as
required.

Individual registries are represented by adapter classes, which can communicate within the
requirements of that particular registry. These are discovered and loaded during Framework startup
via Java's Service Provider Interface4; the purpose here is to allow for new registries to be included at
runtime without code modification.

1
 http://public.ccsds.org/publications/archive/650x0m2.pdf

2
 Apache Maven - http://maven.apache.org/

3
 Java Architecture for XML Binding (JAXB) - https://jaxb.java.net/

4
 Java Service Provider Interface (SPI) - http://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

8

Within the Framework, a number of performance optimisation techniques have been employed. For
example, Ehcache5 is used extensively to provide reliable caches for frequently required objects or for
objects held externally. This helps minimise network traffic and improve response times. The
Framework also uses thread executors to fork and join network object requests (such as registry search
results) to allow multi-registry communications to happen concurrently. This, again, helps improve
response times.

All components and external dependencies have been chosen on both best-of-breed and open licence
grounds.

3 Installation Guide

3.1 Overview

3.2 Prerequisites

3.2.1 Software prerequisites

A working installation of Oracle Java 76.

3.2.2 Hardware prerequisites

None.

3.3 OSS/COTS Installation

None.

3.4 License Information and Terms of Use

The SCIDIP-ES Framework is licensed under the Apache License, Version 2.0 (the "License"). A copy of
the License could be obtained at: http://www.apache.org/licenses/LICENSE-2.0.

3.5 Download information

The Framework library can be downloaded from the SCIDIP-ES Nexus Repository @ http://nexus.scidip-
es.eu/content/repositories/releases/eu/scidipes/common/scidipes-framework/. The source code is available
from the SourceForge svn @ svn://svn.code.sf.net/p/digitalpreserve/code/SCIDIP-
ES/software/common/framework/trunk/

3.6 Installation

5
 EhCache - http://ehcache.org/

6
 Java 7 download - http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.apache.org/licenses/LICENSE-2.0

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

9

The Framework is a library in the form of a Java JAR, which is to be included in the classpath of an
implementing application. This can be done either by downloading and compiling the source from the
SourceForge SVN (see previous Section), or by using the latest compiled release from Nexus, which is
the recommended approach. This document covers the current release version which is version 2.0.0.
The development snapshot in SVN is not covered here.

To include the Framework, add the following dependency the implementing application's pom.xml

<dependency>
 <groupId>eu.scidipes.common</groupId>

<artifactId>scidipes-framework</artifactId>
<version>2.0.0</version>

</dependency>

3.7 Uninstallation

Remove the dependency from the implementing application’s pom.xml.

4 Using the SCIDIP-ES Framework

All of the Registry Framework's core functions are fronted by a single class of static methods. This
design was chosen in an attempt to ensure 'under the hood' singletons are properly controlled, and
that any other framework being used by the implementing application (e.g. Spring7) does not interfere
in any way.

The entry point class for an application to interact with the framework is
Scidipes.common.framework.FrameworkWrapper. The methods in this class return only core Java
classes or SCIDIP-ES Model interfaces which implements the OAIS Information Model with some
additions. There are a few convenience methods, but for the most part the methods are designed to
be included in an application's own control logic – i.e. looped over where necessary. The Framework
does make use of several caches (implemented with Ehcache), which cuts down significantly on
network traffic. Thus no specific requirement is placed on the implementing application to cache
returned objects itself.

In addition to interaction methods, there are two other method in the FrameworkWrapper which are
worthy of special note and these are described next.

The shutdown() method must be called as an application is exiting to ensure the proper disposal of the
caches. Failure to do so could result in unexpected behaviour when the application is next started. It
could also prevent the JVM from exiting, as the cache manager is not in a daemon thread. Once the

7
 Spring - http://spring.io/

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

10

shutdown() method has been called, the Framework will throw cache exceptions if any further
interactions are attempted.

The restart() method reinitialises the Framework, including the cache manager if it is necessary to use
it again, however with good application design this should not be necessary.

The following table gives more details on the expectations and output from the various static methods.
For the most up-to-date information, see the current JavaDoc, which is located at
http://registry2.scidip-es.eu/javadoc/framework/

Method Summary

CurationPersistentIdentifier allocateNewPID()

Allocates a newly generated CPID. At present this simply returns a new
type 4 (pseudo randomly generated) UUID. See
http://www.ietf.org/rfc/rfc4122.txt for details on UUIDs.

CurationPersistentIdentifier allocateNewPIDWithPrefx(String)

Allocates a newly generated CPID using allocateNewPID() with the
passed prefix prepended to it. This could be of use if, for example, it is
wished to use a UUID as a qualified URN, or if an application wishes to
group its created IDs together in some way.

Set<RepInfoCategory> getAllPredefnedCategories()

Returns a set of all the predefined, known non-reserved categories, as
loaded at startup from the APA switchboard. Categories are used by
RILs and Manifests to provide some indication as to the intended use
or purpose of a given piece of RI. A 'non-reserved' category is any
category available for general use, and not reserved for a specific
programmatic function or purpose. Examples of reserved categories
are those for the RILs and Manifests themselves which are used by the
framework to identify known registry response types.

<D extends
DigitalObjectLocation>
Set<Identifier<D>>

getAllRILsOnRegistry(Registry)

Queries the provided Registry for all the most recent versions of the
RepInfo Labels it contains, and returns a set of identifiers. Caution
should be exercised in using this method, as the resultant set has the
potential to get very large from a well-populated registry.

Map<Identifier<DigitalObjec
tLocation>,RegistryObject>

getAllRegistryObjectsFor(Set<CurationPersistentIdentifer>)

This is a convenience method which takes a set of independent CPIDs,
and returns them as keys in a Map, with each one either mapping to
the most recent versions of the Registry object (RIL or Manifest) which

http://registry2.scidip-es.eu/javadoc/framework/
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/CurationPersistentIdentifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/CurationPersistentIdentifier.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoCategory.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Map.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RegistryObject.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

11

it represents, or if it is of an unknown type, mapped to null.

CurationPersistentIdentifier getCPID(String)

One of the core methods. Given a CPID in the form of a String object of
a unique identifier, this will return an object conforming to the model
CurationPersistent-Identifier interface. Nothing is fetched remotely at
that point in time, however the local cache is checked to return an
existing instance if that CPID had been requested already.

<D extends
DigitalObjectLocation>
Registry

getLocationHolding(Identifer<D>)

This is a convenience method. It will return the Registry from which the
passed
identifier was retrieved, unless it is new in which case a null is
returned. This method simply calls getLastKnownGoodLocation() on
the passed identifier itself and type checks the result to ensure it is a
Registry.

Set<Registry> getKnownRegistries()

On startup., the Framework uses Java's Service Provider Framework
(SPF) to discover all the included implementations of the
DigitalObjectLocation model interface. The returned set is checked and
guaranteed to only contain those DigitalObjectLocations which are also
Registries – i.e. which conform to the model Registry interface.

Set<Registry> getEnabledRegistries()

Similar to getKnownRegistries(), this method returns a set of all the
discovered
Registries, which are also marked as 'enabled'. The discovered Registry
objects carry this as a boolean property.

<D extends
DigitalObjectLocation>
Manifest

getManifest(Identifer<D>)

One of the core methods. The identifier passed is expected to be a
CPID, such as that returned by getCPID(String). It should be reasonably
expected that the CPID is one that represents a Manifest before calling
this method, as if the Framework is unsuccessful in finding a Manifest
for the passed identifier, an RIException will be thrown. Assuming
success, an object conforming to the model Manifest interface is
returned. The Manifest returned will be the most recent version found
on any Registry.

<D extends getManifest(Identifer<D>, int)

http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/CurationPersistentIdentifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Registry.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Registry.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Registry.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Manifest.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

12

DigitalObjectLocation>
Manifest

One of the core methods. The identifier passed is expected to be a
CPID, such as that returned by getCPID(String). It should be reasonably
expected that the CPID is one that represents a Manifest before calling
this method, as if the Framework is unsuccessful in finding a Manifest
for the passed identifier, an RIException will be thrown. Assuming
success, an object conforming to the model Manifest interface is
returned. The Manifest returned will be that of the version requested.
An RIException will be thrown if the requested version cannot be
found.

<D extends
DigitalObjectLocation> RepI
nfoLabel

getRepInfoLabel(Identifer<D>)

One of the core methods. The identifier passed is currently expected to
be a CPID, such as that returned by getCPID(String). It should be
reasonably expected that the CPID is one that represents a RepInfo
Label before calling this method, as if the Framework is unsuccessful in
finding a RepInfoLabel for the passed identifier, an RIException will be
thrown. Assuming success, an object conforming to the model
RepInfoLabel interface is returned. The RepInfoLabel returned will be
the most recent version found on any Registry.

<D extends
DigitalObjectLocation> RepI
nfoLabel

getRepInfoLabel(Identifer<D>, int)

One of the core methods. The identifier passed is currently expected to
be a CPID, such as that returned by getCPID(String). It should be
reasonably expected that the CPID is one that represents a RepInfo
Label before calling this method, as if the Framework is unsuccessful in
finding a RepInfoLabel for the passed identifier, an RIException will be
thrown. Assuming success, an object conforming to the model
RepInfoLabel interface is returned. The RepInfoLabel returned will be
that of the version requested. An RIException will be thrown if the
requested version cannot be found.

RepInfoCategory getRepInfoCategoryByName(String)

This will return a RepInfoCategory model object, corresponding to the
textual name passed. If the passed name represents one of the
predefined categories, that fixed category object will be returned. For
any other category name, a new model object is returned; this is to
allow for new categories outside the context of the predefined list to
be created as used. See 'Appendix A – Predefined RepInfo Categories'
for the current list of predefined categories. As all categories are
cached, so this method should be the primary mechanism for obtaining
an instance of a RI Category.

http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Manifest.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoLabel.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoLabel.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoLabel.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoLabel.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoCategory.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

13

<D extends
DigitalObjectLocation>
RegistryObjectType

getRegistryTypeFor(Identifer<D>)

Determines whether a CPID represents a RIL or a Manifest. The
returned
RegistryObjectType object is an enum from the model, representing
one of these two types of objects a Registry can return. If the passed
CPID does not correspond to either a Manifest of RIL (e.g. it simply
does not exist) then null is returned.

<D extends
DigitalObjectLocation>
RepInfoLabel

getRepInfoLabelFromManifestID(Identifer<D>)

This is a convenience method. It is a simple daisy-chain of
getManifest(Identifer<D>) followed by getRepInfoLabel(Identifer<D>),
allowing a straight RIL to RIL chain to be followed (of the most recent
versions) where the application does not care for the intermediate
Manifest.

static <D extends
DigitalObjectLocation>
Set<Identifier<D>>

searchForManifestsByRILCPID(CurationPersistentIdentifer)

Given the CPID of a RIL, this method will return a set of Manifest CPIDs
from across all available registries which are of that RILs type; i.e.
Manifests which name that RIL in their 'rilcpid' field.

static <D extends
DigitalObjectLocation>
Set<Identifier<D>>

searchForRILsReferencingManifest(CurationPersistentIdentifer)

Given the CPID of a Manifest, this method will return a set of RIL CPIDs
from across all available registries which name the passed Manifest in
one of their RI lists.

static <D extends
DigitalObjectLocation>
Set<Identifier<D>>
Set<Identifier<D>>

searchForRILsMatching(String)

Given a textual keyword or phrase as a string, this method will return a
set of RIL CPIDs where the RIL contains that string. No heuristics are
used by the Framework; however, individual registry implementations
are free to perform the search in the best manner they see fit. As a
minimum, it should be expected for the keyword to be searched for as
part of either a RILs 'displayname' or 'description' fields.

<D extends
DigitalObjectLocation>
Set<Identifier<D>>

searchForRILsInCategory(RepInfoCategory)

Given a category object, this method will return a set of RIL CPIDs from
across all available registries where a Manifest which uses this RIL has
advertised itself as being descriptive of the passed category. NB. RILs
themselves do not describe categories.

http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RegistryObjectType.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/RepInfoLabel.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalObjectLocation.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Set.html?is-external=true
http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/Identifier.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

14

void storeManifest(Manifest, Registry)

One of the core methods. This is for storing a new or amended
Manifest object in the specified Registry. The CPID is expected to be
embedded in the Manifest object already, so for new Manifests an
application should first call allocateNewPID() whilst constructing the
object. Versioning is handled automatically, so no attempt should be
made to set or alter the version number property. It is also advisable to
check that the Registry is writeable. Any failure to complete the
storage operation will result in an RIException being thrown.

void storeRepInfoLabel(RepInfoLabel, Registry)

One of the core methods. This is for storing a new or amended
RepInfoLabel object in the specifed Registry. The CPID is expected to be
embedded in the RepInfoLabel object already, so for new
RepInfoLabels an application should first call allocateNewPID() whilst
constructing the object. Versioning is handled automatically, so no
attempt should be made to set or alter the version number property. It
is also advisable to check that the Registry is writeable. Any failure to
complete the storage operation will result in an RIException being
thrown.

Table 1 Static methods provided by the FrameworkWrapper

The following static methods (Table 2) are not concerned directly with Registry object manipulation,
but are for obtaining Java classes from remote repositories where specified by a manifest. The exact
operation of this mechanism is yet to be fully defined, so the current implementation should be seen
as alpha quality code.

Method Summary

JavaConstructor getJavaConstructorFrom(Manifest)

Used to create a new instance of a Java class, as pointed to by the
'location' field in the passed Manifest. The resultant class must
implement the JavaConstructor model interface. This method comes
with some caveats and will throw an IllegalStateException if it is
unsuccessful for any reason. (The exact reason for a failure will be
logged.) It makes use of a custom class loader, which can load
bytecode from any stream, and give it a custom package and
classname. It is currently limited to loading single classes without
dependencies and which are uncompressed, i.e. not in a JAR file. This
is something which will be addressed as priorities dictate.

http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/JavaConstructor.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

15

DigitalInformationObject getInformationObject(JavaConstructor, DigitalObject)

This method attempts to apply the passed DigitalObject to the given
class implementing the JavaConstructor model interface, as returned
by getJavaConstructorFrom(Manifest). The result should be a new
object implementing the DigitalInformationObject model interface.

Table 2 Prototype methods for retrieving Java classes from remote repositories

The getInformationObject method is more or less a demonstrator, as the approach taken to exception
handling is very broad-brush, and may not be acceptable within the implementing application. For the
resultant object to be accepted it must implement the DigitalInformationObject model interface
directly, and not through inheritance. This is due to the fact that verification must be done by
interface name string comparison on account of the class loader hierarchy that will be in place at the
point of execution.

5 Registry Authentication and Authorisation

The Registry interface describes a digital object location which holds only Manifest and RepInfoLabel
objects as all or part of a RepInfo Network (RIN). Such locations may require authentication to access.
The superinterface of Registry, DigitalObjectLocation, defines three accessors whose purpose is
explained in the Table 3 below:

Method Summary

boolean isEnabled()

By default all discovered Registries are enabled. This is an override fag
that will take any given Registry object out of use, and is achieved by
manually calling setEnabled(false). Once disabled, a Registry can be
found again in the set returned by FrameworkWrapper's
getKnownRegistries().

boolean isAvailable()

Until determined otherwise, this will be false. A Registry is considered
to be 'available' if it is enabled, and has been tested to have at least
read access.

boolean isWritable()

http://registry2.scidip-es.eu/javadoc/model/info/digitalpreserve/interfaces/DigitalInformationObject.html?is-external=true

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

16

Until determined otherwise, this will be false. A Registry is considered
to be 'writable' if it is enabled, and has been tested to have read and
write access.

void authoriseForReadOnly()

A Registry can be tested to read and/or write access by calling this or
the authoriseForReadWrite method. Calling authoriseForReadWrite()
implies a call to authoriseForReadOnly(), meaning that there is no write
access to a Registry without there also being read access. These
methods are assertions, in that they do not return a result, but will
throw an RIException in the event of the assertion failing for any
reason. This can be tested for the subclass RIHTTPException, which will
contain further details if the cause of the assertion's failure was server
side – e.g. as a result of rejected credentials.

void setCredentialsProvider(CredentialsProvider)

One Registry can have at most one set of credentials at any one time.
These are provided through a model CredentialsProvider. As the
current implementation of the Framework only understands HTTP as a
communications protocol to Registries, the only CredentialsProvider
implementation included is HTTPAuthCredentialsProvider. These
are immutable holders for username and password pairs, which must
be set into a Registry prior to attempting to call one of the 'authorise'
methods above. If none is set, then it is assumed that the Registry is
'open' and any attempt to 'authorise' will therefore be ignored.

Table 3 Registry interface native and inherited methods

Code recipes for using the Framework library are provided in Annex A.

6 Future Work

The following list is by no means exhaustive, and is not necessarily in priority order; however it is here
to highlight currently foreseen additional development which may be necessary over the remainder of
the project:

1. Registry adapters to be separated out of the core codebase. This will allow registry
implementations to be more easily excluded/included by an application.

2. Review of Java object construction, including adding remote JAR loading.
3. Define Provenance objects and their retrieval.

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

17

7 Reference Manual

7.1 Keyboard shortcuts

N/A

7.2 Command-line commands

N/A

7.3 Public APIs

SCIDIP-ES Framework library provides the FrameworkWrapper class as a singleton with static methods
that the using application should call. The Framework uses extensively objects (e.g.
RepresentationInformation) that implement the Java interfaces defined in the SCIDIP-ES Model-
Interfaces component. The Javadoc for Model-Interfaces is available @ http://registry2.scidip-
es.eu/javadoc/model/

8 Common problems and their correction

None.

http://registry2.scidip-es.eu/javadoc/model/
http://registry2.scidip-es.eu/javadoc/model/

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

18

Annex A. Code Recipes

Initialise all discovered, enabled registries for read access without any credentials set:

for (final Registry reg : FrameworkWrapper.getEnabledRegistries()) {

try {

reg.authoriseForReadOnly();

} catch (final RIException rie) {

if (LOG.isDebugEnabled()) {

LOG.debug("Read authorisation failed for " + reg);

}

}

}

To find out whether a CPID, passed as a String, is a RIL or Manifest:

import static info.digitalpreserve.interfaces.RegistryObjectType.*;

...

final CurationPersistentIdentifier cpid = FrameworkWrapper.getCPID(cpidString);

try {

final RegistryObjectType rrt = FrameworkWrapper.getRegistryTypeFor(cpid);

switch (rrt) {

case RIL:

// Do RIL things

case MANIFEST:

// Do Manifest things

}

} catch (final RIException rie) {

// Handle unknown type condition

}

If you know you have the identifier for a RepInfoLabel as a String:

RepInfoLabel ril = null;

try {

CurationPersistentIdentifier cpid = FrameworkWrapper.getCPID(cpidString);

ril = FrameworkWrapper.getRepInfoLabel(cpid);

} catch (RIException e) {

LOG.warn(e);

}

To retrieve each Manifest which uses a given RepInfoLabel:

final Set<Identifier<DigitalObjectLocation>> manifestIDs =

FrameworkWrapper.searchForManifestsByRILCPID(ril.getCpid());

for (final Identifier<DigitalObjectLocation> manifestID : manifestIDs) {

final Manifest manifest = FrameworkWrapper.getManifest(manifestID);

// Do something with the Manifest

}

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

19

Creating and storing a new Manifest:

// Create a new object conforming to the Manifest interface (fictional)

final MyManifest manifest = new MyManifest();

// Create a new identifier for it

final CurationPersistentIdentifier cpid = FrameworkWrapper.allocateNewPID();

// Set the new identifier into the manifest

manifest.setManifestCpid(cpid);

// Populate the rest of the manifest's fields...

// Find a registry to save it to (fictional private method)

final Registry registry = getChosenRegistryFrom(FrameworkWrapper.getEnabledRegistries());

// [Optional] Set a (fictional) credentials provider.

// This is usually only done once – not for every call.

registry.setCredentialsProvider(new MyCredentialsProvider(user, pass));

try {

// Assert that we have write access to Registry

registry.authoriseForReadWrite();

// Attempt to store the Manifest if the chose Registry is not read-only.

if (registry.isWritable()) {

FrameworkWrapper.storeManifest(manifest, registry);

}

} catch (final RIException rie) {

// Handle store failure

LOG.error(rie);

}

To exclude a Registry from being searched or used:

for (final Registry reg : FrameworkWrapper.getAvailableRegistries()) {

if (reg.getLocationUID().equals("ESA")) {

reg.setEnabled(false);

}

}

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

20

Annex B. Predefined RepInfo Categories

The APA switchboard holds the central list of all the predefined RepInfo Categories, and the most up-
to-date list can be seen on that server itself, which is currently located at:

http://switchboard.digitalpreserve.info/categories.txt

This list should not, however, be considered exhaustive, and indeed is expected to alter over time.
RepInfo Labels and Manifests may carry any text as a 'category' and can be used to supplement or
extend this list as required by end-users. Notwithstanding this, where possible, a predefined entry
should be used in order to maximise the discoverability and potential reuse for any given registry
object.

Here is a list of the current RepInfo Categories, as defined at the time of writing:

Other
Other/Registry
Other/Registry/RepInfoLabel
Other/Registry/Manifest
Other/AccessSoftware
Other/Algorithms
Other/CommonFileTypes
Other/ComputerHardware
Other/ComputerHardware/BIOS
Other/ComputerHardware/CPU
Other/ComputerHardware/Graphics
Other/ComputerHardware/HardDiskController
Other/ComputerHardware/Interfaces
Other/ComputerHardware/Network
Other/Media
Other/Physical
Other/ProcessingSoftware
Other/RepresentationRenderingSoftware
Other/Software
Other/Software/Binary
Other/Software/Data
Other/Software/Documentation
Other/Software/SourceCode
Other/Software/JavaClassConstructor
Other/Software/OperatingSystem
Semantic
Semantic/Data
Semantic/DictionarySpecification
Semantic/DictionarySpecification/Dictionary
Semantic/Document
Semantic/Document/XMLDocument

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

21

Semantic/Language
Semantic/Language/ComputerProgramming
Semantic/Language/ComputerProgramming/VendorExtensions
Semantic/Language/HumanWritten
Semantic/Models
Semantic/Standards
Semantic/Standards/DevelopingOrganisation
Semantic/Standards/DevelopingOrganisation/Standard
Structure
Structure/Container
Structure/Formats
Structure/Formats/DescriptionLanguageSpecification
Structure/Formats/DescriptionLanguageSpecification/FileDescription
Structure/Formats/DataFileType
Structure/Formats/Specification

 SCIDIP-ES
SCIence Data Infrastructure for Preservation – Earth Science

SCIDIP-ES EC Grant Agreement n°. 283401

22

Annex C. References

[D21.3] Generic Services and Toolkits Installation and Deployment Manual (including design and
specification) – Master Document.

Annex D. Figures and Tables

D.1. List of Figures

No table of figures entries found.

D.2. List of Tables

Table 1 Static methods provided by the FrameworkWrapper .. 14

Table 2 Prototype methods for retrieving Java classes from remote repositories 15

Table 3 Registry interface native and inherited methods .. 16

Annex E. Terminology

ACRONYM DESCRIPTION

CPID Curation Persistent Identifier

OAIS Open Archival Information System

RepInfo Representation Information

RIL Representation Information Label

RIN Representation Information Network

RIT SCIDIP-ES RepInfo Toolkit

